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Tracking speckle displacement by double Kalman filtering
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A tracking technique using two sequentially-connected Kalman filter for tracking laser speckle displacement
is presented. One Kalman filter tracks temporal speckle displacement, while another Kalman filter tracks
spatial speckle displacement. The temporal Kalman filter provides a prior for the spatial Kalman filter,
and the spatial Kalman filter provides measurements for the temporal Kalman filter. The contribution of
a prior to estimations of the spatial Kalman filter is analyzed. An optical analysis system was set up to
verify the double-Kalman-filter tracker’s ability of tracking laser speckle’s constant displacement.
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Laser speckle technique[1] has wide-range applications
such as experimental mechanics, machine control, ve-
locimetry, electronic element package, and so on. Some of
these applications involve object motion tracking, which
estimates motion state evolution from noisy measure-
ments. Kalman filters[2−4] have been applied in ob-
ject tracking, such as maneuvering target tracking, for
a long time. In these object-tracking applications, mea-
surements or observations are available; however, object’s
motion states such as displacement, velocity and so on,
are unknown. The goal is to estimate states from noise-
contaminated measurements as accurately as possible.
Kalman filter, which represents the problem in time field
and state space, can obtain optimal estimation for linear-
Gaussian environment. For arbitrary statistics, Kalman
filter is the best linear estimator. Nonlinear problem
could be approximately solved through extended Kalman
filter[5,6] which involves a linearization process. Kalman
filter is recursively Bayesian in that it obtains a prior via
prediction process and then obtains posterior of states
via update process.

This paper presents a speckle tracker consisting of
two sequentially-connected Kalman filters. One of
them estimates speckle temporal displacement; another
Kalman filter estimates speckle spatial displacement.
The sequentially-constructed tracker guarantees that the
temporal Kalman filter provides initial parameter es-
timations for the spatial Kalman filter and the spa-
tial Kalman filter provides accurate measurements for
the temporal Kalman filter. Speckle displacement
could be figured out through such methods as least-
square[7], interpolation[8,9], fuzzy correlation[10], and so
on. These methods, however, do not consider a prior
which could help improving estimation precision. The
double-Kalman-filter tracker considers motion dynam-
ics as Markov process and computes speckle displace-
ment through Kalman filtering. The double-Kalman-
filter tracker, thus, could track speckle displacement ac-
curately.

The double-Kalman-filter tracker is illustrated in Fig.
1. Speckle displacement in a subimage is estimated by
a maximum likelihood method. Speckle displacement in
whole image is estimated by the spatial Kalman filter
which makes use of subimage’s computation as measure-

ment. The spatial Kalman filter’s initial state is pro-
vided by prediction estimation produced by the tempo-
ral Kalman filter at the last time. The temporal Kalman
filter makes use of measurements provided by the spatial
Kalman filter to estimate speckle displacement at cur-
rent time. The tracker’s sequential structure makes sure
that one Kalman filter can utilize another Kalman filter’s
outputs for a good estimation of speckle displacement. In
Fig. 1, Ik and Ik−1 are two speckle images fetched at dis-
crete time kT and (k − 1)T , where k ≥ 2 and T is the
time interval. x̂k(N |ZN ) is the spatial Kalman filter’s
filtering output. x̂k(Mk) and x̂k+1(Mk) are the tempo-
ral Kalman filter’s filtering output and prediction out-
put, respectively. Z−1 denotes unit delay.

If I1 denotes reference speckle image obtained before
object motion, I2 denotes comparison speckle image ob-
tained after object motion, then I1 and I2 have the rela-
tionship as

I1(r) = I2(r + U), (1)

I1(r − U) = I2(r), (2)

where r denotes the location of a pixel in the speckle
image, and U denotes speckle displacement vector. Dis-
placements at pixel r and its neighborhood Ωr could be
assumed a constant U .

Expanding Eqs. (1) and (2) into Taylor series and ne-
glecting the second and higher order components yield

I1(r) = I2(r) + ∇I2(r) · U, (3)

I2(r) = I1(r) −∇I1(r) · U, (4)

where ∇I1(r) and ∇I2(r) are spatial gradients of two
speckle images. Equations (3) and (4) can be rearranged
as

Fig. 1. Double-Kalman-filter tracker.
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2[I1(r) − I2(r)] = [∇I1(r) + ∇I2(r)] · U. (5)

Thus, Eq. (5) holds for all pixels in the subimage Ωr of
pixel at r:

Y = A · U, (6)

where Y = 2[I1(r1) − I2(r1), · · · , I1(rN ) − I2(rN )], A =
[∇I1(r1) + ∇I2(r1), · · · ,∇I1(rN ) + ∇I2(rN )].

Equation (6) being an over-determined linear system,
a random error variable is added into it, yielding

Y = A · U + v. (7)

Assuming v is normal, so that its probabilistic density
is

fV (v) =
1

2π
√|R| exp{−1

2
vTR−1v}, (8)

where covariance R = E{(v − v̄)T(v − v̄)}, v̄ being mean
value of v.

Given data set Y , the likelihood function using Eq. (7)
is

fY/U (Y/U) = fV (Y − AU)

=
1

2π
√|R| exp{−1

2
(Y − AU)TR−1(Y − AU)}. (9)

To maximize the likelihood function fY/U (Y/U), we
can equivalently maximize ln(fY/U (Y/U)), or minimize

J =
1
2
(Y − AU)TR−1(Y − AU). (10)

Differentiating ∂J
∂U = ATR−1(Y −AU) = 0, so that the

maximum likelihood estimation of U is given by[5]

ÛML = (ATR−1A)−1ATR−1Y, (11)

with the estimation error covariance P = (ATR−1A)−1.
At time kT , an image is divided into N subimages,

as shown in Fig. 2. Each subimage computes its speckle
displacement zk(n) by using Eq. (11), n = 1, 2, · · ·, N
being the subimage index. The spatial Kalman filter
makes use of ZN = {zk(n), n = 1, 2, · · · , N} as mea-
surements to estimate speckle displacement xk(n) of
subimage n and its output x̂k(N |ZN ) will be fed into the
temporal Kalman filter. Assuming that whole speckle

Fig. 2. A speckle image is divided into subimages which all
translate equal displacement.

images translated from an equal displacement satisfy
xk(1) = xk(2) = · · · = xk(N) so that{

xk(n + 1) = xk(n)
zk(n) = xk(n) + uk(n) + vk(n) . (12)

For subimage n, vk(n) is its computation error which is
treated as measurement noise. Assuming E[vk(i)vk(j)] =
rδ(i− j) and E[vk(n)] = 0, δ(x) is Kronecker delta func-
tion, uk(n) is some deterministic term. In scalar case,
the spatial Kalman filter is

x̂k(n + 1) = x̂k(n)

+
pk(n + 1)

r
[zk(n + 1) − uk(n) − x̂k(n)], (13)

with pk(n) = pk(0)
1+k(pk(0)/r) and the initial value x̂k(0).

Here, pk(0) is variance of initial state estimation, r being
measurement variance. An equivalent equation of Eq.
(13) can be obtained by induction as

x̂k(n) =
1

1 + npk(0)/r

×[x̂k(0) + (pk(0)/r)
n∑

i=1

[zk(i) − uk(n)]]. (14)

From this equation, we can see that x̂k(n) consists of
two parts one of which comes from a prior x̂k(0) and
another comes from measurements zk(i), i = 1, · · · , n.
The ratio pk(0)/r decides how much two parts con-
tribute to the estimation. Figure 3 indicates that if
pk(0)/r is small then x̂k(n) ≈ 1

1+npk(0)/r x̂k(0), otherwise

x̂k(n) ≈ pk(0)/r
1+npk(0)/r

n∑
i=1

[zk(i) − uk(n)].

Another temporal Kalman filter is used to track speckle
displacement with time going on. Because all subimages
translated from the same displacement at time kT , sat-
isfy xk(1) = xk(2) = · · · = xk(N) = xk, the process
equation and measurement equation can be given as{

xk+1 = f(xk) + wk

mk = xk + εk
, (15)

where mk is the spatial Kalman filter’s output
x̂k(N |ZN ), εk is x̂k(N |ZN )′s estimation error, and wk

is process noise. The function f(·) is speckle temporal

Fig. 3. Coefficients in Eq. (14) changing with the parameter
pk(0)/r.
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dynamic model. Assuming E[εiwj ] = 0, E[wiwj ] =
σ2

wδ(i−j), E[εiεj ] = σ2
εδ(i−j), E[εk] = 0, and E[wk] = 0.

If the function f(·) is not linear, an extended Kalman
filter[5,6] could be applied.

By unit delay, the temporal Kalman filter’s predic-
tion estimation of speckle displacement x̂k+1(Mk) (where
Mk = {mi, i = 2, · · · , k}) is fed back to the spatial
Kalman filter as a prior x̂k+1(0) = x̂k+1(Mk). The tem-
poral Kalman filter’s filtering estimate of speckle dis-
placement x̂k(Mk) is as the tracker’s outputs.

For verification of the double-Kalman-filter tracker, an
optical analysis system was set up, as shown in Fig. 4.
The light beam emitted from a laser diode with 633-
nm wavelength and 10-mW output power was diffusely
reflected by a solid minute-roughness surface. The ob-
ject was mounted on an X-Y stage and was subjected
to translation with stepping motors controlled by a mi-
crocomputer by which a very small displacement of the
object could be conducted in any direction. The mini-
mum speckle displacement is 0.1 μm. The reflected lights
were captured by a charge coupled device (CCD) camera
forming digitalized speckle image. The CCD camera has
512×512 pixels; pixel size is 7.5×7.5 (μm) and fill factor
is 100%. While the surface was accurately conducted to
do two-dimensional (2D) translation by the controller, a
sequence of speckle images were captured at regular time
by an image grabber and stored for further analysis using
a microcomputer.

Object was conducted to do constant displacement in
experiment. The target could be given by{

xk+1 = xk + wk

mk = xk + εk
. (16)

From discrete algebraic Racatti equation (DARE) of
Eq. (16), we can obtain

P 2
x̂ + σ2

w(P 2
x̂ − σ2

ε) = 0, (17)

where Px̂ is the variance of the steady-state filtering es-
timation error of xk. Assuming E[wiwj ] = σ2

wδ(i − j),
E[εiεj ] = σ2

εδ(i − j), the solution of Eq. (17) is

Px̂

σ2
ε

=
2√

1 + 4h2 + 1
, (18)

Fig. 4. Schematic diagram of the experimental setup.

where h = σε

σw
.

It is concluded from Eq. (18) that Px̂ must be less than
σ2

ε if σw �= 0. Figure 5 shows two Kalman filters’ outputs
x̂k(N |ZN ) and x̂k(Mk) while tracking temporal speckle
constant displacement 1.5 μm. Due to its reduced vari-
ance, temporal Kalman filtering outputs fluctuate less
than spatial Kalman filtering outputs.

Mean square root (RMS) of estimation error is used to
indicate tracking accuracy,

RMS =

√√√√ 1
N

N∑
i

(x̂i − xi)2. (19)

The interest area is 25 × 25 pixels. The image is di-
vided into subimages whose sizes are all 10 × 10 pixels.
Subimages are partially overlapped and the total number
of subimages is 10. The ratio pk(0)/r is about 2.

Table 1 lists two trackers’ experimental results in terms
of RMS, Table 2 is counterpart of Table 1 with unit being
pixel. Tracker 1 is the proposed double-Kalman-filter
tracker; tracker 2 employs Eq. (11) for whole speckle
image with R being identity. Two numbers in every
parenthesis are speckle displacements in X direction and
Y direction of the Cartesian coordinate system as il-
lustrated in Fig. 6. For every speckle displacement, all
experiment results are from data after conducting five
run and thirty times per run tracking. The initial state
of the temporal Kalman filter is set to (0,0) for every
tracking.

It is indicated from experimental results listed in Tables
1 and 2 that double-Kalman-filter tracker could accu-
rately track constant distance speckle translation. There
are some comments on these results: 1) from Kalman
theory, the standard deviation of filtering estimation er-
ror is always less than that of measurement noise; 2) the

Fig. 5. Kalman filtering outputs (the initial displacement es-
timation is (1.575,1.575) µm).

Table 1. RMS of Two Trackers Tracking Speckle Constant Displacement I (Unit: µm)

Actual Displacement (0.6,0.6) (1.5,1.5) (3,3) (4.5,4.5) (6,6) (7.5,7.5) Average

RMS of Tracker 1 (0.0270, (0.0217, (0.0398, (0.0570, (0.0772, (0.0960, (0.0531,

0.0248) 0.0210) 0.0412) 0.0607) 0.0833) 0.1020) 0.0555)

RMS of Tracker 2 (0.0630, (0.1762, (0.1545, (0.0953, (0.1830, (0.1267, (0.1331,

0.0510) 0.0743) 0.0375) 0.0555) 0.1358) 0.1417) 0.0826)
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Table 2. RMS of Two Trackers Tracking Speckle Constant Displacement II (Unit: pixels)

Actual Displacement (0.08,0.08) (0.2,0.2) (0.4,0.4) (0.6,0.6) (0.8,0.8) (1.0,1.0) Average

RMS of Tracker 1 (0.0036, (0.0029, (0.0053, (0.0076, (0.0103, (0.0128, (0.0071,

0.0033) 0.0028) 0.0055) 0.0081) 0.0111) 0.0136) 0.0074)

RMS of Tracker 2 (0.0084, (0.0235, (0.0206, (0.0127, (0.0244, (0.0169, (0.0178,

0.0068) 0.0099) 0.0050) 0.0074) 0.0181) 0.0189) 0.0110)

Fig. 6. Speckle displacement: (x, y).

variance of states at initial time should be set to an appro-
priate number for the spatial Kalman filter so that the
prediction estimation of state of the temporal Kalman
filter at the last time contributes to the spatial Kalman
filter’s state estimation appropriately. This setting could
depend on the confidence on accuracy of the applied sys-
tem model; 3) the term uk(n) in Eq. (12) is used to de-
press the bias. uk(n), a factor relevant to tracking per-
formance in terms of RMS, could be obtained through
some statistical way.

In conclusion, a method to track laser speckle displace-
ment is presented. A maximum likelihood method is
used to compute subpixel speckle displacement. The dis-
placement computation is then filtered by the spatial
Kalman filter, which is set up through dividing image
into subimages and employing a simple, approximation-
to-reality model. The spatial Kalman filter and the tem-
poral Kalman filter are sequentially connected together.
The initial state estimation x̂(0) of the spatial Kalman

filter is provided by the temporal Kalman filter. The
contribution of x̂(0) to estimation of the spatial Kalman
filter depends on the ration of p̂0 to r, p̂0 being variance
of initial state estimation, r being measurement variance.
Tracking laser speckle’s constant displacement was con-
ducted using an optical analysis system. The experimen-
tal results verified the double-Kalman-filter tracker.

D. Li’s e-mail address is liiyah@163.com, L. Guo’s e-
mail address is lguo@ustc.edu.cn.
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